This assignment has 6 questions, for a total of 50 points. Unless otherwise specified, complete and reasoned arguments will be expected for all answers.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big oh and running times</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Eager or not?</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Square vs. Multiply</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Graph basics</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Background: Probability</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Array Sums</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Big oh and running times

(a) Write down the following functions in big-oh notation:
1. \(f(n) = n^2 + 5n + 20 \)
2. \(g(n) = \frac{1}{n^2} + \frac{2}{n} \)

(b) Consider the following algorithm to compute the GCD of two positive integers \(a, b \). Suppose \(a, b \) are numbers that are both at most \(n \). Give a bound on the running time of \(\text{Gcd}(a, b) \). (You need to give a formal proof for your claim.)

```
Algorithm 1 \text{Gcd}(a, b)
if (a < b) return \text{Gcd}(b, a);
if (b = 0) return a;
return \text{Gcd}(b, a\%b); (Recall: \( a\%b \) is the remainder when \( a \) is divided by \( b \))
```

Question 2: Eager or not?

Imagine a world in which Moore’s law holds perfectly (every two years, a computer twice as fast arrives). A graduate student enters grad school and realizes she needs to finish a certain simulation in order to graduate. Using the current machines, it would take her 7 years for the computation to complete. Naturally, she wishes to graduate as quickly as possible. Should she start computation right away? If not, what is her best strategy?

Question 3: Square vs. Multiply

Suppose I tell you that there is an algorithm that can square any \(n \) digit number in time \(O(n \log n) \), for all \(n \geq 1 \). Then, prove that there is an algorithm that can find the product of any two \(n \) digit numbers in time \(O(n \log n) \). [Hint: think of using the squaring algorithm as a subroutine to find the product.]

Question 4: Graph basics

Let \(G \) be a simple undirected graph. Prove that there are at least two vertices that have the same degree.

Question 5: Background: Probability

(a) Suppose we toss a fair coin \(k \) times. What is the probability that we see heads precisely once?

(b) Suppose we have \(k \) different boxes, and suppose that every box is colored uniformly at random with one of \(k \) colors (independently of the other boxes). What is the probability that all the boxes get distinct colors?

(c) Suppose we repeatedly throw a fair die (with 6 faces). What is the expected number of throws needed to see a ‘1’? How many throws are needed to ensure that a ‘1’ is seen with probability > 99/100?

Question 6: Array Sums

Given an array \(A[1 \ldots n] \) of integers, find if there exist indices \(i, j, k \) such that \(A[i] + A[j] + A[k] = 0 \). Can you find an algorithm with running time \(o(n^3) \)? [NOTE: this is the little-oh notation, i.e., the algorithm should run in time \(< cn^3 \), for any constant \(c \), as \(n \to \infty \).] [Hint: aim for an algorithm with running time \(O(n^2 \log n) \).

1I.e., there are no self loops or multiple edges between any pair of vertices.